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We break the problem of finding the minimum of a function down according to the 
type of surface encountered locally. Based on this surface classification we adopt that 
minimization strategy which ought to be most effective. We give a modified version of 
Krylov’s eigenvector method, with a starting vector derived by a theorem of Lagrange 
and Beltrami. A convenient lower bound on the condition number of a positive definite 
matrix is obtained. We give a number of numerical examples of our procedure. The 
methods presented depend on the availability of analytic expressions for the first and 
second derivatives. 

1. INTRODUCTION AND SUMMARY 

The problem of finding the minimum point of a function of several variables is 
a classic computational problem. It occurs over and over again in computation 
problems of physics. To cite only a few examples, it occurs in nonlinear least- 
squares analysis, such as exponential decay curves over uneven intervals and phase 
shift analysis, and also the problem of the solution of a system of nonlinear 
equations can be reduced to the solution of a minimization problem. The difficulty 
of this problem is well known for, as Hamming [I] observed: “The more parameters 
that occur nonlinearly, the very much more the computation required to find the 
least squares fit. Experience shows that when the number of nonlinear parameters 
reaches four or five the process can be exceedingly painful and slow.” 

The classical methods for minimization fall into two broad categories. The first 
is fitting a simple form (usually quadratic) to the local surface, extrapolating a 
location of the minimum and jumping to that point. This procedure works well 
effectively doubling the accuracy at every step as long as one is “sufficiently close” 
to the minimum; however, the difficulty is that frequently it is extremely hard to get 
“sufficiently close” for this procedure to operate efficiently, or for that matter even 
to converge. The other category is traveling over the surface seeking at every step 
to reduce the norm of the error. Mesh stepping procedures, gradient methods, 
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and the refined problem parameter variation method of Davidenko [2] where by 
parameter changes a problem with a known solution is continuously distorted 
into the sought problem, belong to this other category. These methods have two 
principal disadvantages: they are not as efficient as the first category of methods 
near the minimum, and second, in common with the first category of methods, 
they become stuck on saddle points, where the surface is flat, that is zero slope, but 
decreases in some directions at a slower rate than linearly. 

For the sort of problems we are interested in, refinement of an approximate 
solution is not a problem. The Newton-Raphson method of fitting the surface with 
a quadratic form and solving for the “bottom of the bowl” is perfectly adequate. 
The main problem is in getting “sufficiently close” (frequently one part in ten 
thousand is required) for Newton’s method to be effective. Our idea is to employ a 
diverse strategy, and not to limit our action to any one fixed method or procedure. 
We analyze the local nature of the surface and act accordingly. The main distinction 
we make is based on whether the matrix of second derivatives is positive definite or 
indefinite. 

In the second section we describe the various methods of minimization which 
we employ. These include several Newton-Raphson procedures, gradient methods 
and an eigenvector method. An improved version of Krylov’s method is used to 
solve for the eigenvector and a theorem due to Lagrange and Beltrami is used to 
provide a suitable starting vector for Krylov’s method. The reason why Runge- 
Kutta procedures are not helpful here is also discussed. Search procedures along 
a path over the surface, and extrapolative and interpolative minimization by 
interval halving are discussed. 

In the third section we classify different types of surfaces which may be 
encountered and select a pattern of procedures which should be most likely to be 
successful in error reduction. We also prove a convenient lower bound on the 
condition number of a positive definite matrix. 

In the final section we describe briefly the minimum problem we are interested 
in and discuss a range of examples. Included among these examples are two 
classical ones previously studied by other workers. 

2. BASIC METHODS EMPLOYED 

In this section we give a list of the basic methods of minimization which are used. 
An analysis of when they are used is deferred to the next section. We shall be 
concerned with that class of problems where the surface is twice continuously 
differentiable and these derivatives can be obtained analytically. The problems 
we are concerned with and the numerical examples we consider all have this 
property. All the procedures we discuss depend on this continuous differentiability 
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and minimization of a surface composed of a myriad of, say, plane-faces is not 
contemplated. 

We define our surface by the function S(x) where x is the position vector in N 
dimensional space with components xi , i = l,..., N. 

The first method we employ is the Newton-Raphson procedure. That is, if one 
expands 

+ 00 x - Y I”), (2.1) 

then in this approximation one may solve for the increment (x - y) which moves us 
to the point where the gradient vanishes. That is to say 

In the approximation (2.1) the projected value at the Newton-Raphson point is 

Gh?) = S(Y) + ; f yy - 6% - Yi) + WI x - y 131. 
z=1 a 

Consequently, this procedure is not apt to be useful in finding a minimum if the 
dot product of the increment vector with the gradient vector indicates a step in the 
uphill direction. We have solved Eq. (2.2) by pivotal Gaussian elimination. A more 
refined procedure was not thought worthwhile for two reasons. First, we will check 
the condition of the second derivative matrix before deciding on what procedure 
to use and in the case of poorly conditioned matrices will take other action in the 
first instance. Furthermore, it will be the length of the projection of the increment 
vector along the near zero-eigenvalue eigenvector(s) which will be ill-defined. In all 
but the simplest case of a purely quadratic surface, one would hardly suppose that 
such a relatively long step would, even if accurately found, provide a good indi- 
cation of the location of the minimum. 

In addition to the Newton-Raphson or bottom-of-the-bowl method, we have 
found restricted Newton-Raphson procedures to be useful. That is, we apply 
the Newton-Raphson procedure not in the full N-dimension position vector 
space, but in a subspace. This procedure is a combination of mesh-stepping 
techniques and jumping to a (restricted) minimum. The idea is, if one cannot 
achieve a minimum in all variables at one stroke, perhaps if some are held fixed, 
one can minimize with respect to the remainder by solving a problem of reduced 
dimensionality (and complexity). The following iteration would then move off in 
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a new direction after a minimum in the subspace had been located. In the particular 
class of problems we are concerned with, we found the use of two subspace restric- 
tions advantageous as we had three natural classes of variables. The smallest 
subset is composed of one-third of the variables and the surface function is a pure 
quadratic form in terms of them. 

In all the Newton-Raphson techniques, and indeed in all the procedures which 
we will employ, we are not content to simply try the computed step. First we test 
it against the initial value of the error for that iteration, and insist that the error 
norm be reduced; that is, we will not take a step which increases the value of S(x). 
Secondly, as for our problems the minimum value of S is zero, we ask whether the 
value of S has been reduced by an arbitrary factor, say, two. If it has not, we 
institute a search procedure. We take further steps in the same direction equal to the 
original step until the error stops getting smaller. If more than ten steps are required, 
we increase the step length by a factor of ten at each step until we have passed the 
minimum. We then interpolate by interval halving until the relative minimum in 
that direction is found with the desired precision. If the value at the midpoint of 
the interpolation interval is greater than the smaller endpoint by more than one- 
fourth the amount the largest endpoint is, then quadratic interpolation projects 
a minimum outside the interpolation interval. We then compute the function value 
one half step beyond the small endpoint and if that value is smaller than that at the 
midpoint, we move to the extended half interval as our next smaller interpolation 
interval. In order to reduce the number of function evaluations required in the 
interpolation procedure, the convergence of the second difference approximation 
to the second derivative in that direction is monitored and a jump to the probable 
minimum is made as soon as the predetermined convergence criterion is met. 

We have also employed what we call the second-order gradient method. The 
ordinary gradient method steps off down the gradient [Householder, 31 and 
searches for a minimum in that direction. However, if we wish to truely follow a 
path of steepest descents, we must solve the system of differential equations 

dx t &s(x) 
dt --- 6Xi ’ 

;=I N. ,.‘.> (2.4) 

If one solves these equations to low order in t, one can obtain second-order 
accuracy from the gradient and second-order derivative matrix, as 

Llx, = - g t + ;g&g t2 + O(t3), i = l,..., N. (2.5) 
z 3 z 3 3 

The second-order gradient method then consists of searching along the curzle (2.5) 
for the minimum value of S. The initial step length is chosen as the positive real t 
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for which (2.5) substituted in (2.1) and carried to second order only in t leads to 
S = 0. If there is no such t, then (2.1) is carried only to first order in t. The search is 
carried out as described above, with due modifications to take account of the 
curved path of search. 

We have also investigated use of the ordinary gradient procedure, but in those 
circumstances in which it is useful the second-order gradient is generally a more 
effective method, and is very little lengthier in time, given that we already have the 
matrix of second derivatives available. Further, we have considered the direct 
integration of (2.4) by a Runge-Kutta method in an effort to follow the path of 
steepest descents. While such a procedure is possible, it has, in our experience, 
been a relatively long and inefficient method compared to the other procedures 
we discribe. Furthermore, if (2.4) is used directly on a parabolic region t - co is 
required to reach the minimum. That difficulty can be overcome by using arc length 
in position vector space instead of t as an independent variable. Nevertheless on 
sample cases we have tried, the step size required to keep the integration going 
downhill instead of uphill was much too small to be competitive. 

The final method we have employed we call the eigenvector method. In order to 
explain the rationale behind this method suppose that we can approximate the 
surface locally by a quadratic plus a linear form. If we have one (or more) negative 
eigenvalue of the matrix of second derivatives, then not only can we go down hill 
by proceeding in any direction making an angle less than 90 degrees with the 
negative gradient, but if we go in the direction of an eigenvector with negative 
eigenvalue then the slope becomes steeper as we proceed. If the surface is globally 
quadratic, the function value in that direction must decrease asymptotically to 
minus infinity, not only in the downhill eigenvector direction but also in the uphill 
eigenvector direction as well. Greenstadt [12] has previously suggested the use of 
eigenvector directions. Fiacco and McCormick [4] discuss under the heading of 
“Modified Newton Method” the employment of approximate eigenvector steps in 
the case of an indefinite second-derivative matrix. Pearson [5] in his fifth algorithm 
investigates essentially the same procedure. The type of approximate eigenvectors 
they use are very closely related to those we discuss below at Eqs. (2.18)-(2.21). 
We have elected to compute accurately the eigenvector corresponding to the 
minimum eigenvalue. For many problems this procedure may be unduly elaborate 
and could, for those problems, be dispensed with; however, for our problems we 
have found that the increase in the magnitude of the negative eigenvalue, relative 
to that of the abovementioned approximate eigenvector, was not uncommonly by 
a factor of l&100 with a corresponding improvement in the rate of error reduction. 

In order to solve the eigenvector problem we have used Krylov’s method [6] 
with a special iterative improvement method. This method uses the characteristic 
polynomial and, as we develop it, will be reliable only for the minimum eigenvalue 
and eigenvector and not for other eigenvalues or eigenvectors. Even complex roots 
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of our characteristic polynomial can appear for symmetric matrices, though they 
are, of course, spurious. These shortcomings are of no concern to us as they only 
effect aspects irrelevant to our needs. Other eigenvector methods may be superior, 
but this one is the best of those we have tried for this problem. The mathematics 
of Krylov’s method is extremely similar to that for Pad6 approximants [see, Ref. 7 
for a review]. The method is briefly as follows. Suppose we seek the eigenvector 
for B. We define 

where 

A = B - 0.6~1, (2.6) 

u = [c 1 b,g /q2 
id 

(2.7) 

is a well-known upper bound to the eigenvalues of B and I is the identity matrix. 
This has the effect of making the sought eigenvalue the one of largest magnitude. 
Define a sequence of vectors by the relation 

If we expand 

X n+l = Ax, . (2.8) 

x1 = f %Si , (2.9) 
i=l 

where gi are eigenvectors of A with eigenvalues hi , then 

X la+1 = : olihingi * (2.10) 
i=l 

If we now define the coefficients 

cn - Xn+1 - x1 = f c&lp, (2.11) 
i=l 

then the auxiliary function 

C(z) = f c,z* 
n-0 

(2.12) 

sums to 

(2.13) 
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which is of the form of the ratio of a polynomial of degree N - 1 over one of 
degree N. This form is exactly the [iV, N - l] PadC approximant to (2.12). The 
denominator polynomial which is the characteristic polynomial is then given by the 
standard formula [7] 

Q(Z) = det 

CO Cl --* CN 
. . 
. . 

. . . (2.14) 
CN, CM **a CZN-1 

ZN ZN-l . . . 1 

(The polynomial in practice is more conveniently evaluated by the solution of an 
equivalent set of linear equations or through recursion relations [7].) The roots of 
Q(z) are found by Newton-Raphson and Bairstow iterations, the smallest one, ;1, 
selected, and 

N-l 

lqz) = - = Q(Z) 1 e,zj 
1 - &z j=o 

(2.15) 

formed. Now as &(X;‘) = 0 for Xi f h, , we must have 

N-l 

jFa eN-i--i%+i = orJ~N~@3 58 (2.16) 

as that linear combination of the first N x’s which points in the direction of 5, . 
In order to check the accuracy, the vector computed in (2.16) is tested in the 
Rayleigh quotient 

and if the value of h, from (2.17) agrees with the root of Q(z), then it is accepted. 
Otherwise the process is repeated using 5, of (2.16) as a new x1 . This procedure 
increases the prominence of the smallest eigenvalue and although by making aS 
much larger than the other al’s we may decrease their accuracy, we are unconcerned 
about this occurrence as we seek only the minimum. A slightly annoying aspect 
occurs when one of the poorly determined roots moves onto the negative real axis 
below the real singularities. We counter this difficulty by checking (for negative 
eigenvalues of B) all the real roots between - 1.6~ and -0.60~ + u (U from 2.7 and 
u = minimum of zero and 90 % of the smallest Rayleigh quotient so far obtained) 
and selecting that eigenvector with the smallest Rayleigh quotient as 5, for the next 
starting vector. We pick the above range of roots as we are only interested in 
finding negative or “zero” eigenvalues of B. In practice, one or two applications of 
Krylov’s method is usually sufficient. 
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Having determined the eigenvector, we must now choose one of two possible 
directions and a step length. In the case that the smallest eigenvalue of B is negative, 
we compute two steps, one forward and one backward by the condition that S 
vanish in quadratic approximation and a search (in each direction) is carried out 
as before. Note that this procedure represents a possible departure from strict 
steepest descents as it can conceivably look over the brow of a hill to see a better 
region on the other side. If the smallest eigenvalue of B is positive, we pick a step 
length which would make S vanish in linear approximation. This procedure and it 
alone of those we have tried is very effective in escaping from saddle points. Saddle 
point trapping is a characteristic difficulty of all methods whose step length or 
direction is calculated from the gradient. 

In the above discussion of Krylov’s method, the choice of the initial vector was 
not specified. Plainly a vector more parallel to the sought vector than perpendicular 
to it is desirable. The surfaces we have investigated have produced particularly 
difficult matrices in the saddle shaped regions. The sort of matrix encountered has 
one very small, relative to the largest positive eigenvalue, negative eigenvalue plus 
several small positive eigenvalues. The other eigenvalues are distributed up the 
real axis to the largest. This eigenvalue distribution makes the determination of a 
vector which produces a negative Rayleigh quotient very difficult by many of the 
usual methods. We have adopted a procedure, based on the Lagrange-Beltrami 
Theorem [8], which produces a vector whose Rayleigh quotient has the same sign 
as that of the smallest eigenvalue of B. The LagrangeBeltrami Theorem states that 
if none of the determinants 

b 11 ... b lk 

det / Bk j = det : ’ . . : , (2.18) 

b kl ... b kk 

k = 1, 2,..., n - 1, are zero then the quadratic form 

Q(X) = 5 xibi+j (2.19) 

can be expressed as 

Q(x) = fl $$ 

where det I B, / = 1 and 

Yk = xk f i aLi%, 
j=k+l 

k = 1, 2 ,..., n. 

(2.20) 

(2.21) 
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The ratio of determinants in (2.20) are just the diagonal elements of the triangu- 
larized form of B. This result can be seen from the facts that the operations involved 
in triangularization leave the determinant unchanged and that the coefficient of 
bkkyK2 in (2.20) is unity. Now from (2.20) it follows at once that it is necessary and 
sufficient for Q(x) to be positive definite, that is to have all positive eigenvalues, 
for all the determinants in (2.18) to be positive. Consequently, if there are negative 
eigenvalues, at least one determinant of (2.18) must be negative. Thus our procedure 
is to triangularize B, and find the minimum diagonal element (less than zero when 
there is a negative eigenvalue). Say this is the coefficient of 4,: in (2.20). We then 
construct by Gram-Schmidt orthogonalization that vector in the 1 dimensional 
subspace spanned by x1 ,..., x1 which is perpendicular to y, , yZ ,..., y,-, ; that is, 
equivalently, to the first I- 1 rows of either B, or the triangularized version of B. 
This vector necessarily has a Rayleigh quotient of the same sign as the sign of the 
minimum eigenvalue. We use it as a starting vector for the Krylov procedure. 

3. CLASSIFICATION OF SURFACE TYPES 

In order to select an appropriate procedure or sequence of procedures from those 
described in the previous section, we first classify the nature of the surface into 
twelve logical categories (six of which cannot occur for the problems with which 
we are most concerned) and describe the action to be taken in each case. We base 
the classification scheme on the first two derivatives. The first derivative can be 
either (CL) of zero magnitude or (/3) of nonzero magnitude. By “zero” we mean the 
larger of the limit set by round-off in its calculation or small enough to predict 
a Newton Raphson step of length less than a preassigned error tolerance. The 
second derivative matrix can be (a) strictly positive definite-that is, all eigenvalues 
are greater than zero; (b) nonnegative definite-that is, all eigenvalues are greater 
than zero except there is at least one zero eigenvalue; (c) Saddle-point-that is, 
some eigenvalues are positive and some are negative; (d) Flat-that is, all eigen- 
values are zero; (e) nonpositive definite-that is, all eigenvalues are negative except 
that at least one is zero; (f) strictly negative-definite-that is all eigenvalues are 
negative. Taking all possible combinations of types of first and second derivatives 
leads to 12 logical categories for the local nature of the surface. For the cases 
we will be interested in a2S/axi2 > 0, and hence the sum of the eigenvalues is greater 
than zero and so cases (d)-(f) cannot arise. However, we will discuss them anyway 
for completeness. 

By a zero eigenvalue we mean one which is small in magnitude in comparison 
to the eigenvalue of largest magnitude. We use as a criterion, the expected error in 
the Newton-Raphson method. This error can be related to the problem of inverting 
the second derivative matrix. We require that enough accuracy remain to reproduce 
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the sign and magnitude of the change in S due to a Newton-Raphson step. We 
use [Marus, 91 the result 

/l(A(A-l) - I) < 14.24 P(A) n2/+, (3.1) 

where (A-l) is the approximate inverse to the II x II matrix A generated by Gaussian 
elimination using s places on a scale of /3, P(A) = 1 h,, i/l Amin j is a condition 
number for A, and cl(X) is the largest eigenvalue of X. If we require our estimate 
of (1 to be less than l/2 [from (2.1)], say l/7, then we would say that A has for our 
purposes a “zero” eigenvalue, when 

(3.2) 

It is convenient for our purposes to have a method to estimate P(A), the con- 
dition number &(A)/&(A) of an n x n, positive-definite matrix A without having 
to solve for all the eigenvalues or invert A, where we define 

h,(A) 3 h,(A) 3 ... 3 h,(A) > 0. (3.3) 

To this end we will establish an estimate which is a lower bound for P(A). First 
let us note two known inequalities [Beckenbach and Bellman, 81. First, by the 
Cauchy-Poincare Separation Theorem 

k(A) 2 M-V 2 &+,(A>, s=l ,..., n - r, (3.4) 

where B is the projection of A on any subspace of dimension 12 - r. Secondly, by 
“An Inequality Concerning Minors” [8] 

det I 4, I d det I Alk I det I Ak+l,n I, (3.5) 

where the determinants are defined by 
arr ..* a,, 

det I A,, 1 = det : ’ . . : . (3.6) 

a,, *** ass 

Since a determinant is equal to the product of the eigenvalues 

I 
k h+k%.k+l) = hl(Al.k+l) pl X,(A, k) * (3.7) 
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Thus, by the Cauchy-Poincare separation theorem 

Thus by taking the ratio of the maximum to the minimum of the determinant 
ratios, we can obtain a lower bound for P. We can improve the lower bound for 
X,(A) because by (3.4) and (3.5) 

det I A1.j I 
h(A) 2 %5 2 det 1 Al,j-l 1 3 j = 2,..., n. 

Thus the maximum of the aj5 is a better lower bound for X,(A). Now if we 
triangularize a matrix by adding multiples of rows to other rows, the determinant 
is unchanged. Thus it follows easily that if T = triangularization of A, its diagonal 
elements are given by 

hl = 41 9 
det I Al.5 I 

‘j5 = det 1 A,,j-1 I ’ 
j = 2,..., n. 

Hence we have 

UN 
f’(A) = X,(A) 2 

maxl~5~nb551 
mh,5&551 

(3.11) 

for a positive definite matrix. It is to be noted that in this estimate the actual 
calculations are nearly the same as in the trial vector for starting our eigenvector 
procedure. 

We tabulate in Table I the 12 logical categories and what seems to us the best 
initial procedure. The categories 7-12 cannot occur for our problems but we have 
listed them for completeness. 

On the basis of Table I we have simplified the classification of the surface to 
three types, based on the second derivative alone. They are: (1) positive definite; 
(2) indeterminate, including nonnegative definite and flat; and (3) indefinite, if 
there is at least one negative eigenvalue. 

If the surface is positive definite, a Newton-Raphson procedure is tried. If the 
error is not reduced by a minimum amount (we choose by a factor of two), a search 
along the Newton-Raphson direction is tried. If the error is still not reduced by a 
factor of two, the two, subspace, Newton-Raphson procedures (with search as 
required, except for the purely quadratic subspace) are tried. Finally, the second- 
order gradient method is tried, if the error has still not been reduced by a factor 
of two. That procedure is then chosen which was most successful in reducing the 
error. 
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TABLE I 

Surface Type Strategy Table 

Category Surface type Probable best procedure 

1 a a zero slope, pos. def. solution, quit 

2 Pa nonzero slope, pos. def. Newton-Raphson 

3 a b zero slope, nonneg. def. If no improvement possible with eigen- 
vector step, must be a solution. 

4 P b nonzero slope, nonneg. def. Newton-Raphson procedure should fail 
on zero determinant, so use an eigen- 
vector step or second order gradient step. 

5 o(c zero slope, saddle point eigenvector step 

6 PC nonzero slope, saddle point eigenvector step or second order gradient 
step 

------------- ------------------------------ 

7 ci d zero slope, flat Higher order method required 

8 B d nonzero slope, flat second order gradient 

9 a e zero slope, nonpos. def. eigenvector step 

10 /3e nonzero slope, nonpos. def. eigenvector step 

11 af zero slope, neg. def. eigenvector step 

12 Bf nonzero slope, neg. def. eigenvector step 

If the surface is indefinite, the eigenvector procedure is tried first. If the error is 
not reduced by a factor of two, the second-order gradient procedure is tried, and 
finally the three Newton-Raphson procedures. If the error has not been reduced 
by a factor of two, the most successful procedure at error reduction is selected. 

If the surface is indeterminate, the same sequence of steps is followed as when it 
is indefinite, except that the iteration procedure can now terminate on a full-space 
Newton-Raphson step whereas it cannot terminate unless the error has been 
reduced to the roundoff limit if the surface is indefinite. 

4. NUMERICAL EXAMPLES 

The physical and mathematical problem in which we are mainly interested arises 
in the statistical mechanics of the critical point and is a problem of approximate 
analytic continuation. At the critical point, many of the thermodynamic properties 
become singular. These physical singularities are reflected in singularities in the 



DIVERSE STRATEGY MINIMIZATION 285 

mathematical functions which describe these properties. Extensive, exact power 
series expansions are known in many instances for these functions. The problem 
which presents itself is to determine Ai , yi , yi , i = l,..., N, such that a prescribed 
set of power series coefficients of the function 

‘d-4 = go + 5 A,[(1 + xJ#” - l]/Yi = 2 gjxj 
i=l j=O 

(4.1) 

agree with those of the known expansion f(x). We have chosen for our surface 
function 

k+3N 

w = c (& - .w> 
j=k+l 

(4.2) 

where the J; are given and the gj can be given explicitly as 

(4.3) 

where (f) is the usual binomial coefficient. The resulting minimum problem turns 
out to be a very difficult one in the sense that the surface changes very rapidly in 
terms of the parameters and condition numbers of IO9 are quite common for the 
matrix of second derivatives. 

We can conveniently label our test cases by the given functions f(x) or 5’(x). The 
surface function S(x) for the first 6 tests is derived from the f(x) quoted by means 
of (4.2). They are: 

Test Series No. 1: 

f(x) = (1 - x)-” + 2(1 - 2x)-l. 

Test Series No. 2: 

f(x) = (1 - 2x)-l.’ + (1 + 2.5x)-l. 

Test Series No. 3: 

f(x) = (1 - 2x)-l.l + (1 + 2.5x)-l + 0.8(1 

Test Series No. 4: 

f(x) = (1 - x)-l + 4(1 - x)-0.5. 

Test Series No. 5: 

f(x) = (1 + 2ix)-1 + (1 - 2ix)-1. 

- 

(4.4) 

(4.5) 

- 2.5x)-l. (4.6) 

(4.7) 

(4.8) 
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TABLE II 

Numerical Results 

Test Starting point Iterations 

1.1 0.1 % 20 

1.2 1.0% 41 

1.3 1.0% 61 

1.4 100% 54” 

2.1 1.0% 11 

2.2 10. % 22 

3.1 0.5 % 608 

3.2 0.1 % 178 

4.1 1.0% 264 

4.2 0.1 % 91 

5.1 0.5 - 1.0% 9 

5.2 1.0% 11 

5.3 1.0% 9 

5.4 10. % 16 

6.1 0.1 % 5 

6.2 1.0% 10 

6.3 5.0 % 30 

7.1 1.0, -1.2, +5.0 18 

8.1 15.0, -2.0, +5.0 8 

8.2 15.0, 2.2302, +5.0 7b 

8.3 15.0, 3.0, 5.0 7 

8.4 15.0, 7.0, 5.0 9 

a Converges to a different solution. 
b Converges to the relative minimum. 
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Test Series No. 6: 

f(x) = 2(1 - 0.9x)-1.25 + (1 + wx)-’ + (1 + w%-l - 4(1 + x)-0.5, (4.9) 

where w is one of the cube roots of unity. 

Test No. 7 (Rosenbrock’s notorious, banana-shaped valley, Rosenbrock [lo]): 

S(A, y, y) = lOO(A - y2)2 + (1 - JJ)” + (1 - 47 + y2)2. (4.10) 

The last term is a decoupled extra term to make the number of variables divisible 
by 3 and thereby avoid extensive modification of our computer program. 

Test No. 8 (Polynomial Equation of Freudenstein and Roth [l 11): 

w, Y, y) = i-13 + A + (C--v + 5)Y - 2)Y12 
+ f-29 + A + ((Y + l)Y - 14)v12 + (1 - 4r + 73”. 

(4.11) 

The same remark applies about the last term in (4.11) as about the last term in 
(4.10). 

In Table II we have tabulated the results of our experience with these procedures. 
They were programmed for the Brookhaven CDC 6600, a go-bit machine. The first 
digit in the test number refers to the series being tested. The starting points differ 
from the exact solution by the quoted percentage in every parameter. The behavior 
for the first series is roughly as follows. Initially the surface is indefinite and a 
variety of procedures are employed and after a number of iterations a positive 
definite region is reached in which Newton-Raphson with search is the main 
procedure. Progress continues at a modest rate until the parameters are about 
0.01% off the solution at which point the bowl shaped region about the solution is 
entered and the Newton-Raphson procedure behaves in textbook fashion drama- 
tically decreasing the error with every application. In test 1.4, a far-off start leads 
to a different solution 

A, = 3.903004 y1 = -0.52121305 y1 = -0.86745371 

A, = -3.7493483 y, = -2.1428515 y2 = -0.39286949 (4’12) 

thereby proving that these equations do not necessarily have a unique solution. 
The behavior on test series 2 is very similar, except that it is a much easier case, 

presumably because neither singularity completely dominates the other in low 
order. We stop our iterations if the Newton-Raphson step is less than lo-’ or the 
error has been reduced by twenty-seven orders of magnitude below that for all 
A, = 0. This stopping rule is used for all the cases reported. 
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The third test series is a particularly difficult one as over 90 % of the iterations 
are spent with a condition No. > log. Whether the number of iterations could be 
cut substantially by the use of more significant figures is unknown. Again, a variety 
of procedures is used, the Newton-Raphson with search being the most frequently 
selected procedure in the indeterminate region. The final error of the nine param- 
eters was at worst one in the sixth figure when iteration was terminated according 
to either criterion. 

The fourth test series has two confluent singularities. Most of the iterations were 
spend in an indefinite region using a variety of procedures. The solution, bowl- 
shaped region was finally found when the parameters were only off by a few parts 
in 106. 

Test series 5 has two complex conjugate singularities and shows that the same 
procedures described can be applied to real series with complex singularities with 
appropriate complex conjugates in the formulas. All of the procedures used must 
maintain a complex conjugate pair of singularities as complex conjugates; however, 
due to round-off we have found it desirable to continually enforce this condition 
so as not to get off course. 

Test series 6 shows that there must be other considerations than simply the 
number of singularities as there are 12 parameters (8 nonlinear) in this case and 
speedy convergence was obtained. 

Test 7, Rosenbrock’s banana shaped valley was started at the classic starting 
point, and simply followed the curving valley to its minimum point at A = y = 1 .O. 

In Test 8, minimum points of the surface corresponding to the polynomial 
equations of Freudenstein and Roth were easily obtained by our procedures. In 
test 8.1 the relative minimum at 

A = 11.412778987, y = -0.89680525327 (4.13) 

instead of the absolute minimum at 

A = 5.0, y = 4.0, (y = 3.732050876) (4.14) 

was found. In Test 8.2, the program demonstrated the power of the eigenvector 
procedure to find a steeper slope by looking over the brow of a hill. This test 
surface has a saddle point at y = &(2 + d\/2Z) M 2.23014, and A corresponding. 
By starting with y = 2.2302 and minimizing with respect to A first we arrive on 
the solution side of a saddle point. The eigenvector procedure is able to look over 
the saddle point and make a greater initial improvement by going down the steeper 
slope toward the relative minimum than by going along the more gradual slope 
to the real minimum so convergence is obtained to the relative minimum. 
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